Spectral convergence of probability densities for forward problems in uncertainty quantification

نویسندگان

چکیده

The estimation of probability density functions (PDF) using approximate maps is a fundamental building block in computational probability. We consider forward problems uncertainty quantification: the inputs or parameters deterministic model are random with known distribution. scalar quantity interest fixed measurable function parameters, and therefore variable as well. Often, map not explicitly difficult to compute. Hence, problem design good approximation (surrogate model) interest. For goal approximating moments interest, there well developed body research. One widely popular approach generalized polynomial chaos (gPC) its many variants, which spectral accuracy. However, it clear whether PDF can be approximated accuracy This result does follow directly from spectrally accurate moment estimation. In this paper, we prove convergence rates for PDFs collocation Galerkin gPC methods Legendre polynomials all dimensions. particular, exponential densities guaranteed analytic quantities one dimension, provide more refined results stronger rates, an alternative proof strategy based on optimal-transport techniques.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forward and Backward Uncertainty Quantification in Optimization

This contribution gathers some of the ingredients presented during the Iranian Operational Research community gathering in Babolsar in 2019.It is a collection of several previous publications on how to set up an uncertainty quantification (UQ) cascade with ingredients of growing computational complexity for both forward and reverse uncertainty propagation.

متن کامل

Reduced order methods for uncertainty quantification problems

This work provides a review on reduced order methods in solving uncertainty quantification problems. A quick introduction of the reduced order methods, including proper orthogonal decomposition and greedy reduced basis methods, are presented along with the essential components of general greedy algorithm, a posteriori error estimation and Offline-Online decomposition. More advanced reduced orde...

متن کامل

Uncertainty Quantification Techniques for Fluid- Flow Problems

Optimization and design in the presence of uncertain operating conditions, material properties and manufacturing tolerances poses a tremendous challenge to the scientific computing community. In many industry-relevant situations the performance metrics depend in a complex, non-linear fashion on those factors and the construction of an accurate representation of this relationship is difficult. I...

متن کامل

analysis of ruin probability for insurance companies using markov chain

در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2022

ISSN: ['0945-3245', '0029-599X']

DOI: https://doi.org/10.1007/s00211-022-01281-4